Movimiento parabólico y aplicación del software matemático GeoGebra Classic 5 para su simulación.

in #stem-espanol6 years ago (edited)

(Todas las imágenes y animaciones han sido hechas por mi usando el software matemático GeoGebra Classic 5.)

Saludos queridos lectores, hoy les traigo un tipo de movimiento que está presente en diferentes fenómenos y con el cual hemos tenido contacto a lo largo de nuestra vida; al patear un balón, al batear o lanzar una pelota, todos estos ejemplos tiene algo en común y es que al ser lanzados con cierto ángulo respecto al eje horizontal sus trayectorias terminan describiendo una parábola y por eso se le conoce como movimiento​ parabólico.

A continuación haremos un estudio de este movimiento enfocado en el lanzamiento de proyectiles logrando una deducción de las ecuaciones que lo rigen y para continuar con el aprendizaje del software GeoGebra integraré en este mismo artículo lo que he venido haciendo por separado, mostrar cómo realizar la simulación de un fenómeno, en este caso del movimiento parabólico para así ir avanzando en el dominio del software.

Para el estudio de este movimiento haremos uso de un modelo idealizado en el cual se desprecia la fricción debida al aire, la curvatura de la tierra y su rotación; al estar inmerso en un plano de dos dimensiones solo consideraremos la aceleración vertical que este sufre debido a la gravedad la cual será siempre constante en magnitud y dirección, la componente x de la aceleración es cero por lo tanto en el eje x el proyectil describe un movimiento con velocidad constante y en el eje y uno con aceleración constante dado como dije antes por la gravedad, ademas se considera que en t = 0 el proyectil se encuentra en x = 0 e y = 0.

El vector velocidad de la partícula siempre es en todo punto tangencial a la trayectoria​.

Teniendo en cuenta lo anteriormente dicho podemos descomponer al vector velocidad en sus componentes y tratar el problema por separado aplicando la segunda ley de Newton:

Para el eje x.

Al tratarse de un movimiento a velocidad constante tenemos:

Por lo tanto:

Sabemos que:

Por lo tanto:

Del triangulo que se forma podemos ver que:

Para el eje y.

Aplicando la segunda ley de Newton:

Sabemos que la aceleración es igual a la gravedad, entonces:

Vemos que:

Y sabemos que:

El resultado de lo anterior es:

(1)

Alcance del proyectil.

Podemos determinar a que distancia aterrizará el proyectil a partir de las ecuaciones encontradas anteriormente, para esto supondremos que el proyectil aterriza a la misma altura de la cual partió.

Recordemos que:

Por lo tanto:

Al sustituir lo anterior en (1) y recordando que obtenemos:

Hecho lo anterior procedemos a despejar "t" lo cual por ser una ecuación de segundo grado tiene dos soluciones, la primera es cero lo cual corresponde cuando el objeto partió de la posición inicial y la segunda es:

Esta solución corresponde al tiempo que tarda en caer el proyectil y se le conoce como
tiempo de vuelo (tv)
el cual nos permite saber a que distancia caerá el proyectil sustituyendo esa expresión en:

Al sustituir y realizar las operaciones correspondientes obtenemos el alcance del proyectil:

Altura máxima.

Anteriormente encontramos el tiempo que tarda el proyectil en completar su trayectoria (tiempo de vuelo), la altura máxima que alcanza el proyectil se da justo en la mitad de la trayectoria por ende el tiempo que tarda en llegar ahí es la mitad del tiempo de vuelo y se le conoce como
tiempo de subida (ts):

Recordando que la velocidad es al sustituir esto y la expresión anterior para el tiempo en
(1)
y realizar las operaciones correspondientes obtenemos la altura máxima que alcanza el proyectil:

Ejemplos.

¿Qué ocurre si la gravedad es cero?

Como podemos ver el proyectil ya no describe una parábola; la trayectoria es una recta ascendente debido a que no hay ninguna fuerza externa que se oponga al movimiento de este.

Aumentando la gravedad.

En la animación anterior vemos la variación de la trayectoria a diferentes valores de la gravedad, empezando con la gravedad de la tierra y terminando con una fuerza de gravedad similar a la de Júpiter. Como se observa a una mayor fuerza de atracción gravitacional el alcance del proyectil disminuye, llegando a tierra más rápido.

Disminuyendo la gravedad.

En el caso contrario como es de esperar el alcance aumenta, al disminuir la gravedad el proyectil en su trayectoria describe parábolas más amplias.

Aumentando la velocidad inicial.

Como podemos ver a mayor velocidad inicial el proyectil alcanza una mayor distancia lo cual concuerda con nuestra experiencia diaria al lanzar una pelota.

Variando el ángulo de lanzamiento.

Al aumentar el ángulo de lanzamiento de 0 a 45° el alcance aumenta y en el intervalo de 46° a 90° empieza a disminuir, se observa que el máximo alcance se logra con un ángulo de lanzamiento de 45°.

Pasos para crear la simulación con GeoGebra Classic 5.

Empezaremos creando deslizadores para el tiempo, la gravedad, la velocidad inicial y el ángulo de lanzamiento:

Para el tiempo el intervalo del deslizador será de
0 a tv
y para el ángulo de
0 a 90.

Luego de esto escribiremos en la barra de entrada cada ecuación que rige el movimiento parabólico.

Empezamos con la velocidad.

Para el eje x:

Para el eje y:

tiempo de vuelo:

Tiempo en llegar al punto más alto:

Alcance:

Altura máxima:

Luego de esto escribimos la función que rige el movimiento parabólico (nuestra parábola).

El resultado es el siguiente:

Como vemos nuestra parábola es muy grande así que debemos delimitar el área de interés, para esto usaremos el comando "función" con las siguientes características:

En expresión colocaremos
f
en valor inicial
0
y en valor final
R
obteniendo como resultado la siguiente curva:

Hecho lo anterior procederemos a crear un punto que intercepte a esta curva y el eje y para esto vamos a la segunda ventana de la barra de herramientas y seleccionamos la opción intersección. Luego de seleccionada hacemos click sobre la curva y después sobre el eje y, hacemos lo mismo para el eje x y obtenemos lo siguiente:

Estos puntos representan el punto de salida y el punto de llegada. Ahora para crear nuestro proyectil crearemos una recta con definición está recta se moverá mientras avanza el tiempo:

En los puntos donde esta recta y nuestra parábola se interceptan es la trayectoria que seguiría nuestro proyectil, así que usaremos de nuevo la herramienta de intercepción sobre la recta y la parábola para crear este punto:

El resultado de todo lo que hemos hecho hasta ahora es lo siguiente:

Llegado a este punto ya tenemos nuestra simulación lista, solo debemos ocultar los objetos no deseados, agregar colores, estilo de líneas entre otros:

Terminada nuestra simulación podemos empezar a interactuar con ella variando la velocidad, el ángulo de lanzamiento, la altura, la gravedad y responder todas nuestras incógnitas sobre cómo varía la trayectoria del objeto al cambiar estas variables.

Conclusiones generales:

  • En el movimiento parabólico en el eje x el proyectil describe un movimiento a velocidad constante.

  • En el movimiento parabólico el proyectil describe un movimiento con aceleración constante en el eje y debido a la gravedad.

  • El vector velocidad es tangencial a la trayectoria.

  • El tiempo de vuelo es el tiempo que tarda el proyectil en completar su trayectoria.

  • El tiempo que tarda el proyectil en llegar al punto más alto es igual a la mitad del tiempo de vuelo.

  • En el punto más alto de la trayectoria la velocidad vertical es cero.

  • El mayor alcance del proyectil se logra al lanzarlo con un ángulo de 45° respecto a la horizontal.

  • A menor gravedad el alcance del proyectil aumenta y si la gravedad aumenta el alcance disminuye.

  • Mientras mayor sea la velocidad inicial del proyectil el alcance será mayor.

Material consultado:

Resnick, Halliday y Krane (1993), Física. 3ra edición Compañía Editorial Continental México Volumen 1.

Young, H. D, & Freedman, R. A. FISICA UNIVERSITARIA, volume 1. Pearson Educación de México, S.A. de C.V., 2009.

(Todas las imágenes y animaciones han sido hechas por mi usando el software matemático GeoGebra Classic 5.)

Espero hayan disfrutado de este post y la aplicación de este maravilloso software.

Para leer contenido de calidad sobre ciencia los invito a visitar la etiqueta #stem-espanol.

Imagen creada por @djredimi2

Sort:  



This post has been voted on by the steemstem curation team and voting trail.

There is more to SteemSTEM than just writing posts, check here for some more tips on being a community member. You can also join our discord here to get to know the rest of the community!

¡Espectacular! Lástima que me está faltando tiempo para estudiarme bien este programa. Iré de a poco.

Gracias @reyvaj me alegra tenerte de nuevo por acá, éxito, cualquier inquietud ya sabes que puedes preguntarme.

Hola Luis:
Poco a poco le voy encontrando la vuelta. Me parece excelente el programa. Nada parecido existía en mi época de estudiante.
Pero estoy teniendo problemas para exportar gráficos animados. Entiendo que tengo que usar la opción gif y elegir el deslizador que corresponda. Pero, además de que tarda mucho en hacer la exportación, después al reproducir el archivo nuevo el movimiento es muchísimo más lento de lo que era en geogebra, dura como una hora un movimiento que debería durar unos pocos segundos. No sé a qué se debe. He visto que como opción al exportar aparece 500 m/s. No sé si conviene cambiar ese parámetro, pero hice varias pruebas en ese sentido y no mejoró. En fin, si se te ocurre qué es lo que puede estar pasando, qué estoy haciendo mal.
Gracias. Saludos.

Hola @reyvaj si, cuando comencé me pasaba exactamente lo mismo se quedaba como "colgado" el programa, siempre pongo el tiempo entre cuadros a 1ms prueba haciendo esto; ademas que en la configuracion de tu deslizador seguramente tienes el incremento a 0.01, cambialo a 0.1 o 0.5 con esto ya debería solucionarse.

Te recomiendo también que el intervalo de tus deslizadores no sea muy grande, mientras mas grande sea el intervalo mas tarda en crear la animacion, por favor me comentas si se solucionó.

Gracias Luis:
Sí, tenía un intervalo grande. Quedó algo lento, pero no importa, lo subí igual. Como el post está relacionado con el mundial no quería dejar pasar más tiempo. El próximo quedará mejor. Muchas gracias por tu inestimable ayuda.

Ahí lo modifiqué como me sugeriste y resultó perfecto. En efecto había puesto un incremento demasiado pequeño, y se ve que sumado a esos 500 m/s que aparecen por defecto resultaba demasiado lento.

Me alegro @reyvaj, me pase por tu publicación quedo muy bien la simulación y las demás imágenes de verdad te felicito, me alegra poder ayudar con estos artículos. Te invito a que cuando publiques temas sobre física uses la etiqueta #stem-espanol y si te interesa puedes unirte a la comunidad de STEM.

Dale. Así lo haré. Gracias, Luis.

Hola! Esperamos que estés muy bien :D pasamos por tu post para brindarte nuevas opciones, nos presentamos; somos @cryptoespacio una casa se cambio que no solo te ofrece la opción de cambiar tus SBD y STEEM a Bolívares, también cambiamos otras cryptomonedas, si quieres ser parte de nuestra familia te invitamos a nuestro servidor de Discord, donde encontraras muchísima mas información y una atención mas dedicada ;) Saludos.
https://discord.gg/bPt9RW2

Congratulations @luiscd8a! You have completed the following achievement on Steemit and have been rewarded with new badge(s) :

Award for the number of upvotes

Click on the badge to view your Board of Honor.
If you no longer want to receive notifications, reply to this comment with the word STOP

Do not miss the last post from @steemitboard:
SteemitBoard World Cup Contest - The results, the winners and the prizes

Do you like SteemitBoard's project? Then Vote for its witness and get one more award!

Coin Marketplace

STEEM 0.23
TRX 0.24
JST 0.038
BTC 95361.20
ETH 3282.78
USDT 1.00
SBD 3.29