Encryption & Quantum Computers: Are We Doomed?

in technology •  8 months ago


What is Encryption

Put simply, Encryption is taking information and scrambling it so it becomes gibberish. Turning this scrambled mess back into real information can only be done through decryption.

To decrypt an encrypted file or message, you need the cipher. A cipher is normally a key that tells the user how to translate the original message from the gibberish.

The earliest cipher I am aware of is called the Caesar cipher. This is a shift cipher and one of the simplest forms of encryption. These were use to send secret messages around the world. If Caeser had a command for a general in a distant land he would use a predetermined numb to shift each letter in the message.

For example, let's say Caesar and his General chose the number twenty-two in secret before parting ways to conquer the know world. Some time passes and Caesar needs to tell the General to "grab the spoils and come home" but does not want that information to fall into the wrong hands.

By shifting the letters by the predetermined twenty-two, the message would now look like "cnwx pda olkeho wjz ykia dkia". Not very useful to an eavesdropper, but the General would know to count back twenty-two for each letter to learn what Caesar message is.

This method is very easy to crack since language is predictable. For the same reason we don't want to think up our own passwords, we would not want to use a Caesar cipher today. Computers are very good at running millions of guesses per second and will crack the code very quickly.

Encryption and Quantum Computers

"Imagine a world where the most widely-used cryptographic methods turn out to be broken: quantum computers allow encrypted Internet data transactions to become readable by anyone who happened to be listening. No more HTTPS, no more PGP. It sounds a little bit sci-fi, but that’s exactly the scenario that cryptographers interested in post-quantum crypto are working to save us from." - hackaday.com

Any of the encryption methods based on factoring primes or doing modular exponentials is in trouble:

  • RSA
  • Elliptic Curve Cryptography
  • Diffie-Hellman
  • Elgamal (Used by PGP)

These are the most currently used public-key cryptography. As well as the key exchange that’s used in negotiating an SSL connection (the little green lock in you browsers' address bar).


Strong symmetric ciphers such as AES and Blowfish will also be easier to crack with quantum computers, but only by roughly a factor of two. So if you are happy with AES-128 today, all you will have to do is move to AES-256 in a quantum-computing future. After doing so, your security level will be the same as today.

Quantum computers have stirred up a good deal of buzz around the crypto space, which makes sense since our best crypto-systems depend on how hard the encryption is to crack. If a computer ends up cracking Bitcoin, than the value of that coin drops to zero overnight. This would have a major effect on the entire ecosystem.

But is all lost?

I suggest reading Post-quantum RSA by Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. However, it is a bit dense, so lets touch on some of the main points the authors bring up.

They estimate that attacking a terabyte-size key using Shor’s algorithm would require around 2^100 operations on a quantum computer. That's an enormous number! It's similar to the total number of bacterial cells on Earth.

In terms of today's computers, an Intel Core i7 6950X can perform 106 cycles per second. If we run one of the 2^100 operations per cycle, it would take around 3,792 quintillion centuries! If you had that in 1 Million dollar bills, you'd have a trillion of them!

The paper doesn't convert this to a concrete time estimate for quantum computers, but research listed in the Cornell University Library suggests that a real quantum computer wouldn’t be able to accomplish this in any reasonable amount of time.

This being said, a terabyte sized key is not practical for most uses. It would take about 5 days for the average computer to even use this key. That's not efficient for either the sender or the receiver of the encrypted information. If I needed to wait five days in order to decrypt my password for @jesta's Vessel STEEM application, I would never get anything done.


Should we worry?

The short answer is no. To keep our data secure as quantum computers get better and more available, we will need better encryption. Thankfully people are already working on this and there are already ideas on making this happen. These are the people that need encryption to work.

The very same will spearhead or fund the advances in encryption technology. Think of all the governments and organizations that need to make sure their information stays private. Just sitting by without being proactive about their data is not what entities with secret information do.

what about the quantum computers that already exist?

There is no need to worry about the ones that exist either. They are still so new that they are only being used to research on how to make them better. They are not cracking passwords or encrypted data, and definitely not wasting time with a random internet user's master password.

The people that want your data do not have access to these quantum computers, so there is no need to worry. Keep using encryption if you do and, if you don't, start! Progams like Keybase make it very easy to secure data be it files or just text. Keybase even has a default encrypted folder that syncs across any computer you login to making it much more secure than Dropbox.

Thanks For Reading

If you have anything to add please comment below!

All images came from royalty and attribution free sources unless specified.

Looking to take your Steem based creations to the next level?
Join us over at the Creators' Guild Discord group!
We are here to encourage, support and increase the creation of quality content.

Like what you see?! You can vote me as witness!
If you have any questions about the future of Steem or my witness please feel free to message jrswab#3431 on Discord.


Go to https://steemit.com/~witnesses
Scroll down to the bottom of the page.
Type "jrswab" into the box.
Click "Vote" once.
Refresh & check.

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

Very very nice topic about Encryption & Quantum Computers, thnx for post

fascinating... i guess there is no end to any war until conscience decides it's so, so that goes for cyber war as well

but how does the decentralized nature of storage help, isn't that another firewall of sorts against hacking // sorry i know very little on the issue



how does the decentralized nature of storage help, isn't that another firewall of sorts against hacking

Anything that scatters data helps but there is always a weakest link that we need to look for and strengthen.

Thanks. Intriguing for me.

Amazing content, as usual! Keep the good work. :)


Thank you!

awesome article @jrswab.... make this platform as a new science that you must be mastered... congratulation

after I read your writing, I feel small, and many languages ​​I can not understand about super sophisticated technology, I think you are the right person in helping the successor, with the knowledge you have.
you are one of the few geniuses on earth, keep fighting for mankind, thank you for the very useful knowledge for us.

Aren't code the earliest form of encryption (like replace steem by gold, post by mail, ...)?

The other question, and no one gives an hint, is how powerful they will be. Cryptography needs practical bounds to know what can be considered secure.

Also cryptographers are optimistic we won't the quantum computers before a while. Quantum physicists are hopeful of the inverse.