0,99999... = ?

in #polish2 years ago (edited)

Dziwna liczba

Dzisiaj chciałbym przedstawić Wam zagadkę matematyczną. 

Mamy pewną liczbę, która jest wyrażona w ten oto sposób:

0,99999...

... - Oznaczają, że liczba się nie kończy i "biegnie" tak aż do nieskończoności.

Możemy więc ją również zapisać tak:

0,(9)

() - Gdzie liczba w nawiasie oznacza ciągle powtarzającą się liczbę, w tym przypadku 9.

Zadanie

Liczba 0,99999... jest równa:

A. mniej niż 1,

B. więcej niż 1,

C. równa 1,

D. żadna odpowiedź z powyższych.

Obstawcie swoje typy, a potem przejdziemy do rozwiązania tego problemu.

Dowód matematyczny

Za chwilę okaże się, kto miał rację. Oznaczmy tą liczbę jako x = 0,99999...

x = 0,99999... 

Pomnóżmy równanie przez 10. Aby tego dokonać, należy przesunąć miejsce po przecinku o jedno miejsce w prawo. W ten sposób otrzymujemy:

10x = 9,99999...

Odejmijmy 10x - x.

10x - x = 9,99999... - 0,99999...

Jak się okazujemy możemy odjąć liczby po przecinku, gdyż są one takie same.

9x = 9

Dzielimy przez 9.

x=1

Tak, jak się okazało uzyskana liczba to 1.

Na pierwszy rzut oka, wydawało się, że będzie to jednak liczba mniejsza od 1, gdyż każde dodawanie liczby 9 po przecinku nigdy nie powinno dać końcowego wyniku równego 1! 

W praktyce, wychodzi jednak coś innego. Zadanie to jest związane z pewnym paradoksem greckim.

Paradoks strzały

Podobny problem opisuje grecki paradoks strzały. Według niektórych starożytnych Greków strzała nigdy nie powinna osiągnąć swojego celu, np. tarczy.

Drogę, którą musi przebyć strzała, dzielimy na połowy. Z połowy, którą otrzymaliśmy, wydzielamy następną połowę, potem ponownie wykonujemy tą czynność i tak w nieskończoność...

Ogólnie drogę (s), którą przebywa strzała, można opisać tak:

1/2s + 1/4s + 1/8s +1/16s + ... = ?

Po przeanalizowaniu tego paradoksu, można dojść do wniosku, że strzała zawsze będzie miała jakąś część drogi do pokonania i nigdy nie dotrze do celu!

Tak się jednak nie dzieje.

Jak widać otrzymany ciąg jest równy drodze (s).

Ciągi liczbowe

Dla zainteresowanych tematem polecam zgłębić zagadnienie ciągów liczbowych. Przedstawiona przeze mnie liczba 0,99999... po odpowiednim przekształceniu tworzy szereg geometryczny, a wyrażenie związane ze strzałą sumę ciągu geometrycznego. Nie chciałem zagłębiać się w tajniki matematyczne, gdyż próbowałem dotrzeć do jak największej ilości osób.

Życzę Wam wszystkiego dobrego i pamiętajcie, że matematyka to naprawdę ciekawy przedmiot!



Sort:  

Ale przecież to że 0,(9) = 1 to nie jest żaden paradoks. To są po prostu dwa różne zapisy tej samej liczby.
Oba są poprawne choć 0,(9) jest mniej popularne.

Tak samo jak 0,(3) = 1/3 albo 0,5 = 1/2 = 2/4 to też są po prostu różne zapisy tych samych liczb.

Witam.
Proszę mi wskazać, gdzie napisałem, że zapis 0,(9) to paradoks. Celem tego wpisu było ukazanie ciekawostki matematycznej, gdyż wielu ludzi pewnie by stwierdziło, że 0,(9) to liczba mniejsza niż 1.
Jeśli chodzi o paradoks grecki ze strzałą, to w tym wypadku, chodziło o ukazanie bardzo podstawowe wprowadzenie informacji o szeregu geometryczny w prosty i zrozumiały sposób.
Oczywiście ma Pan całkowitą rację, że 0,(9) to żaden paradoks. W tym wypadku pojęcie "paradoks" stosowane jest potocznie.

Faktycznie. Nigdzie nie napisał Pan że ten fakt jest paradoksem. A ja trochę nad interpretowałem cały post, doszukując się w nim sugestii, że ta ciekawostka matematyczna jest czymś niezwykłym.
Dziękuję za wyjaśnienie intencji i empatyczne zwrócenie uwagi że nie dla wszystkich takie rzeczy są oczywiste.

Matematyka jest moim ulubionym przedmiotem szkolnym. Wiem, że większość osób go nie lubi, ale to niestety wina naszego systemu edukacji, a nie polskich nauczycieli.

Czy mogę czuć się dumny, że wiedziałem, iż jest to 1? :D

Jeżeli ktoś ci zadał pierwszy raz pytanie o to i od razu odpowiedziałeś na nie poprawnie, to myślę, że tak. :D