joepsj
9MathQ01-3,5
Chapter 1
Sets and Functions
Exercise 1.1
- Write each of the following sets (i) in set builder form (ii) in listing its elements.
(1) The set N of natural numbers.
(2) The set J of all positive integers.
(3) The set P of all prime numbers.
(4) The set A of all positive integers that lie between 1 and 13.
(5) The set B of real numbers which satisfy the equation 3x2 + 5x – 2 = 0. - Choose a suitable description (a) of (b) or (c) in set builder form for the following sets.
(1) E ={ 2, 4, 6, 8}
(a) E = { x/ x is an even integer less than 10 }
(b) E = { x/ x is an even positive integer less than 10 }
(c) E = { x / x is positive integer, x< 10 and x is a multiple of 2}
(2) F = { 3, 6,9, 12, 15 , …}
(a) F = {x/ x is appositive integer that is divisible by 3}
(b) F = {x/x is a multiple of 3}
(c) F = {x/x is a natural number that is divisible by 3} - A = {x/x2 + x – 6 } and B = { -3,2}. Is A = B?
- A = {x/x is prime number which is less than 10} and B = {x/x2 – 8x + 15 = 0}
(a) Is A = B (b) Is B⊂ A? - P = {x/x is an integer and -1 < x<3/5 }and Q = {x/x3 -3x2 + 2x = 0} . Is P = Q?
6.L= {(x,y)/ x and y are positive integers and x + y = 7}.Write L by listing its elements.
Exercise 1.2
1.Draw the following intervals.
(a) {x/x > 2} (b) {x/x ≥ 3} (c) {x/x x ≤ -1} (d) {x/x>-1}
(e){x/-2≤ x≤ 2} (f) {x/0≤x≤ 5} (g) {x/x≤0 or x.2}
- Draw a graph to show the solution set of each of the following.
(a) x-1<4 (b) x-1≤ 0 (c) 2x≤5 (d) 2x-1>7
(e) 5-x≥1 (f) 1/3(x-1)<1
3.Draw the graph of the following number lines below one another.
(a) P = {x/x≥3, x∈R} (b) Q = {x/x≤-2, x∈R}
(c) P∩Q (d) P∪Q - On separate number lines draw the graph.
S = {x/x>-4} , T = {x/x<3}.Give a set –builder description of S∩T.
Exercise 1.3
- M = {x/x is an integer , and -3<x<6} , N = the set of positive integers that are less than 8.
Find M∩N. (3 marks) - A = {x/x is a positive integer that is divisible by 3}, B = {x/x is a positive integer that is
divisible by 5. Find (a) A∩B (b) L.C.M of 3 and 5 - J =}. B = { x/x is a positive integer that is
divisible by 3}. C = {x/x is appositive integer that is divisible by 5}. List the elements of the
sets A, B, C. Find (a) A∩ (B∩C) and (b) (A∩B) ∩C. Show that A∩ (B∩C)= (A ∩ B) ∩ C
6.Let A = {x/x is a positive integer less than 7} and B = {x/x is an integer land -3 ≤ x ≤4}.
List the number of A and B, and then write down A ∪ B. - Let A = {x/x is an integer, 0<x<6} and B = {x/x is a positive integer less than 13 and x is
a multiple of 3}. List the number of A and B, and find A ∪ B. - If P = {x/x2 + 2x -3} and Q = {x/x is an integer, -1 ≤ x ≤ 4}, find P ∩ Q and P ∪ Q.
Exercise 1.4
- Find the set B\A and A\B in the following.
(a) A = { 1,2,3,4,5,6} , B = { 3,5} (b) A = { p,q,r,s} , B = { x,y,z}
(c) A = { 1,2,3} , B = { 1,2,3,4} - S = the set of natural numbers and T = the set of positive even numbers. Describe in words
the complement of T. - Let S = {1,2,3,4,5,6,7,8,9} and A = { 1,2,3,4,5}, B = { 2,4,6,8}. Find (a) A^' (b) B^'
(c) A^'∩B^' (d) A∪B (e) (A∪B)^' what can you say about A^'∩B^' and (A∪B)^'? - S = {1,2,3,4,5,6,7,8}, A = {1,2,3,5,7}, B = {1,3,5,7}, C = {2,4,6,8}
(i) List the sets A^', B^'and C^'.
(ii) State whether each of the following is true or false.
(a) A∩A^'=∅ (b) A∪A^'=∅ (c) A⊂B (d) B⊂A
Congratulations @tinmoelwin67! You have completed the following achievement on Steemit and have been rewarded with new badge(s) :
You published your First Post
You got a First Vote
Award for the number of upvotes received
Click on the badge to view your Board of Honor.
If you no longer want to receive notifications, reply to this comment with the word
STOP
To support your work, I also upvoted your post!
Congratulations @tinmoelwin67! You received a personal award!
You can view your badges on your Steem Board and compare to others on the Steem Ranking
Vote for @Steemitboard as a witness to get one more award and increased upvotes!