An Exploration of the Relationship between Mathematics and Music
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.

src
While music theory has no axiomatic foundation in modern mathematics, the basis of musical sound can be described mathematically (using acoustics) and exhibits "a remarkable array of number properties"
History
Though ancient Chinese, Indians, Egyptians and Mesopotamians are known to have studied the mathematical principles of sound,[2] the Pythagoreans (in particular Philolaus and Archytas)[3] of ancient Greece were the first researchers known to have investigated the expression of musical scales in terms of numerical ratios,[4] particularly the ratios of small integers. Their central doctrine was that "all nature consists of harmony arising out of numbers".[5]
From the time of Plato, harmony was considered a fundamental branch of physics, now known as musical acoustics. Early Indian and Chinese theorists show similar approaches: all sought to show that the mathematical laws of harmonics and rhythms were fundamental not only to our understanding of the world but to human well-being.[6] Confucius, like Pythagoras, regarded the small numbers 1,2,3,4 as the source of all perfection.[7]
Time, rhythm, and meter
Without the boundaries of rhythmic structure – a fundamental equal and regular arrangement of pulse repetition, accent, phrase and duration – music would not be possible.[8] Modern musical use of terms like meter and measure also reflects the historical importance of music, along with astronomy, in the development of counting, arithmetic and the exact measurement of time and periodicity that is fundamental to physics.[citation needed]
The elements of musical form often build strict proportions or hypermetric structures
Musical form is the plan by which a short piece of music is extended. The term "plan" is also used in architecture, to which musical form is often compared. Like the architect, the composer must take into account the function for which the work is intended and the means available, practicing economy and making use of repetition and order.[10] The common types of form known as binary and ternary ("twofold" and "threefold") once again demonstrate the importance of small integral values to the intelligibility and appeal of music.A musical scale is a discrete set of pitches used in making or describing music. The most important scale in the Western tradition is the diatonic scale but many others have been used and proposed in various historical eras and parts of the world. Each pitch corresponds to a particular frequency, expressed in hertz (Hz), sometimes referred to as cycles per second (c.p.s.). A scale has an interval of repetition, normally the octave. The octave of any pitch refers to a frequency exactly twice that of the given pitch.
Succeeding superoctaves are pitches found at frequencies four, eight, sixteen times, and so on, of the fundamental frequency. Pitches at frequencies of half, a quarter, an eighth and so on of the fundamental are called suboctaves. There is no case in musical harmony where, if a given pitch be considered accordant, that its octaves are considered otherwise. Therefore, any note and its octaves will generally be found similarly named in musical systems (e.g. all will be called doh or A or Sa, as the case may be).
When expressed as a frequency bandwidth an octave A2–A3 spans from 110 Hz to 220 Hz (span=110 Hz). The next octave will span from 220 Hz to 440 Hz (span=220 Hz). The third octave spans from 440 Hz to 880 Hz (span=440 Hz) and so on. Each successive octave spans twice the frequency range of the previous octave.