The Joys of an Herb Garden at Home v2 - Part 3 of 3

in #gardening7 years ago

VENTING

hot bikini smoker.jpg

You have to vent a lot with a HID lamp, less so for fluorescents. Also, humidity build up requires that you vent at least a few times per day. For a room with a hot lamp that builds up heat quickly, the best vent would be one that cleared the room in 3 minutes, then would go for 27 minutes before venting again, or similarly, vent 3 minutes, shut off 12 minutes, etc. The trick is to find a timer that will do this sort of thing. Not easy to find and not cheap. Once you need to regulate CO2 on and off inversely with the fan, you're looking at a $100 climate controller.

Alternatives are a thermostat that turns on a fan when a certain temperature is reached, and turns it off when the temp recedes 4 degrees. But it is a bitch to coordinate CO2 release with this one, since you don't know when the fan goes on. $39 for this thermostat, but to sync it to CO2 with a voltage sensing relay is $100 for the ready-made switch, so then the environment controller at $100 is cheaper. All you really want is a fan that clears the air in a few minutes, a temperature switch that turns on and off the fan, and an inverse switch that turns off and on the CO2. If you can vent the room really quick and the heat does not build up too quickly, the CO2 could be run in a slow, continuous fashion, and would build up in-between the occasional quick exhaust cycles.

Two timers synched can be used, but the only ones cheaply available are the 30 min. interval, 48 trips per 24 hours. So I could have a fan run 30 mins. on, then 30 mins. off. I could also sync it to the light so that I don't vent when the lamp is off. I can sync this to an identical timer that will turn on CO2 during the time that the fan is not on, and vise versa. It would be difficult to sync them closer that 5-10 mins., but at least there would be a possible inexpensive solution. $20 for two of these timers.

Fans are expensive to buy for venting, but I just go down to the local electronic parts liquidators and they have muffin fans for $5-10, so that's a real savings over the $50-70 these fans cost new at the indoor garden stores. A good vent fan will keep the humidity and temperature down, and distribute CO2 to your plants from new incoming air.

Even though CO2 enrichment can mean 30-100% yield increases, the hassle, expense, space, danger, and time involved can make constant or near constant venting a desirable alternative to enrichment. As long as the plant has the opportunity to take in new CO2 at all times, from air that is over 200 ppm CO2, the plants will have the required nutrients for photosynthesis. Most closets will need new CO2 coming in every two or three hours, minimum.

Internal air movement is very necessary as well. An oscillating fan should be used to circulate air within the growroom, to help circulate CO2. It will also keep the humidity down, allowing the air to absorb more moisture, and reduce risk of fungus. A wall mount oscillating fan will not take valuable floor space. The best grow rooms have the most internal air circulation.

TEMPERATURE

Proper temperature is one highly variable factor. Most books state optimum grow temperature to be 70-80 degrees, but many list extenuating circumstances that allow temperatures to go higher. Assuming genetics is not a factor, plants seem to be able to absorb more light at higher temps, perhaps up to 90 degrees. High light and CO2 levels could make this go as high as 95 degrees for increased growth speed[1]. An optimum of 95 degrees is new data that assumes very-high light, CO2 enrichment of 1500 ppm and good regular venting to keep humidity down. It is not clear if these temperature will reduce potency in flowers. It may be a good idea to reduce temperatures once flowering has started, to preserve potency, even if it does reduce growth speed. But higher temperatures will make plants grow vegetatively much faster, by exciting the plants metabolism, assuming the required levels of CO2 and light are available, and humidity is not allowed to get too high.

With normal levels of CO2, in a well vented space, 90 degrees would seem to be the absolute max., while 85 may be closer to optimum, even with a great deal of light available. Do not let the room temperature get over 35 C (95 F) as this hurts growth. Optimal temperature is 27-30 C (80-86 F) if you have strong light with no CO2 enrichment. Less than 21 C (70 F) is too cold for good growth.

Low temperatures at night are OK down to about 60 degrees outdoors, then start to effect the growth in a big way. Mid 50's will cause mild shock and 40's will kill your plants with repeated exposure. Keep your plants warm, especially the roots. Elevate pots if you think the ground is sucking the heat out of the roots. This is an issue if you have a slab or other type of cold floor.

As temperature goes up, so does the ability of the air to hold water, thus reducing humidity, so a higher average temperature should reduce risk of fungus.

Contrary to many reports, high humidity is not good for plants except during germination and rooting. Lower humidity levels help the plant transpire CO2 and reduce risk of molds during flowering.

Studies indicate the potency of buds goes down as the temperature goes up, so it is important to see that the plants do not get too hot during flowering cycles.

1.D. Gold: CO2, Temperature and Humidity, 1991 Edited by E. Rosenthal.

PESTS

You really have to watch pests, or all your efforts could result in little or nothing in return. Mites and Aphids are the worst; whiteflies, caterpillar and fungi are the ones to watch out for long term. Pyrethrum bombs can start you with a clean slate in the room, and then homemade or commercial soap sprays will do most of the rest. When bringing in plants from outside, pyrethrum every broad leaf top and bottom and the soil too. Then watch them closely for a week or two, and soap down any remaining bug life you find from eggs being hatched. This should do the trick for a month or two, long enough it won't be an issue before harvesting.

Fungus is another obstacle in the path of a successful growing season. When the flowers are roughly half developed they become susceptible to a fungus or bud rot. It appears that growing conditions for the fungus are best when temperatures are between 60 and 80 degrees and the humidity is high. The fungus is very destructive and spreads quickly. It is a spore type of fungus that travels to other buds via the wind so it is impossible to prevent or stop if weather conditions permit it to grow. If things should go badly and the fungus starts to attack your plants, you must remove it immediately or it will spread to other areas of the plant or plants.

Some growers will remove just the section of the bud that is infected whereas other growers will remove the entire branch. Removal of the entire branch better insures that the fungus is totally removed, and also enables the grower to sample the crop a few weeks ahead of time.

Fungi can wipe your crop quick, so invest in some safe fungicide (Safer makes a good product) and spray down the plants just before flowering if you think fungus may be a problem. Don't spray the plants if you have never had problems with fungus before. Keep humidity down, circulate air like crazy in the grow space and keep unquarantined outdoor plants out of the indoor space. Don't wait until after flowering, since it's not a good idea to apply the fungicide directly to flowers. Instead, flowers must be cut off when they are infected.

Most fungicides are very nasty, and you won't want to ingest them, so it is necessary to use one that is safe for vegetables. Safer makes a suitable product that is available at most nurseries.

Use soap solution like Safer to get rid of most aphid problems. Use some tobacco juice and chili pepper powder added to this for mites. Dr. Bronners Soap can be used with some dish detergent in a spray bottle if you want to save money.

TRANSPLANTING

There will be little or no shock if you are quick and tender in your handling of the plants. Make sure you only need to transplant twice, or better yet, once if possible, through the entire growth cycle. Transplanting slows you down. It takes time, is tricky, and threatens the plants. Start in as large a container as possible, square is best. 16 ounce paper or plastic cups work OK, and 2 litter soda bottles cut down may be big enough for the first harvest when growing hydroponically. One-gallon plastic milk or water containers (squarish) will work too, if you want to work around the handle (really not a problem if you don't mind cutting them up when you transplant later for second harvest).

Or start seeds and rooted cuttings in 16 oz. plastic cups. It's better to have less seedlings than it is to have many seedlings that need constant transplanting. These larger cups take only a little more space, and allow you to transplant only one time before harvesting the first crop. Transplant into a gallon water jugs (cut down to 3/4 gallon) before forcing flower growth. To regenerate this plant after harvesting, transplant it into a larger pot after it goes into vegetative growth once again, 5 gallon paint buckets work pretty well if you can spare the space, and a 2-3 gallon container would make this plant's 2nd harvest better than the first, given enough vegetative regrowth first.

One more tip:

A Russian study showed that seedlings with at least 4" of soil to grow the tap root were more likely to go female. The source I'm quoting says "This may be why some farmers get female/male ratios as great as 80%/20%."

EARLY SEXING

It's possible to tell the sex of a plant early, and thus move male plants out of the main growing area sooner by covering a plant's lower branch for 12 hours a day while it's in a constant light vegetative state. Use a black paper bag or equivalent to allow for air flow while keeping out light. Be sure to set up a regular cycle for these covered branches. If light is allowed to reach them during the dark period, they may not indicate early at all.

Use a magnifying glass to look at the early flowers sex type. A male plant will have a small club (playing card) looking preflower with a small stem under it. A female flower is usually a single or double pistil, white and wispy, emerging from an immature calyx.

REGENERATION

It is possible to harvest plants and then rejuvenate them vegetatively for a 2nd and even 3rd harvest. A second harvest can be realized in as little as 6-8 weeks.

Harvested plants come inside for rejuvenation under continuous light. It will take 7-14 days to see signs of new growth when regenerating a plant. As stated before, and in contrast to normal growth patterns, lower branches will be the first to sprout new vegetative growth. Just make sure when harvesting, you leave most healthy fan leaves and a few lower branches of the plant, or even just a few grow tips will do. Since the plant's stalk, and roots are already formed, the plant can produce a second, even third harvest of buds in a little more than half the time of the original harvest. Allow the plant to grow a little vegetatively, then take outside again to reflower. Or keep inside for vegetative cuttings. You now have two or three generations of plants growing, and will need more space outside. But you will now be harvesting twice as often. As often as every 30 days, since you have new clones or seedlings growing, vegetative plants ready to flower, and regenerated previous crops flowering too.

HARVESTING AND DRYING

Harvesting is the reaping of the bounty, and is the most enjoyable time you will spend with your garden.

Plants are harvested when the flowers are ripe. Generally, ripeness is defined as when the white pistils start to turn brown, orange, etc. and start to withdraw back into the false seed pod. The seed pods swell with resins usually reserved for seed production, and we have ripe sinse buds with red and golden hairs.

It is interesting that the time of harvest controls the "high" of the buds. If harvested "early" with only a few of the pistils turned color, the buds will have a more pure THC content and will have less THC that has turned to CBD and CBN's. The lessor psychoactive substances will create the bouquet of the pot, and control the amount of stoneyness and stupidness associated with the high. A pure THC content is very cerebral, while high THC, high CBD, CBN content will make the plants more of a stupid, or hazy buzz. Buds taken later, when fully ripened will normally have these higher CBN, CBD levels and may not be what you prefer once you try different samples picked at different times. Don't listen to the experts, decide yourself based on what you come to like yourself.

Keep in mind, a bud weighs more when fully ripe. It is what most growers like to sell, but take some bud early for yourself, every week until you harvest, and decide how you like it for yourself. Grow the rest to full maturity if you plan to sell it.

Do not cure pot in the sun, it reduces potency. Slow cure hanging buds upside down in a ventilated space. That is all that is needed to have great sensi. Drying in a paper bag works too, and may be much more convenient. Bud tastes great when slow dried over the course of a week or two.

If you're in a hurry, it's OK to dry a small amount in-between paper sheets or a paper bag in a microwave oven. Go slow and check it, don't burn it. Use the defrost power setting for a slower, better drying. It will be harsh smoking this way though.

A food dehydrator or food preserver will dry your pot in a few hours, but it will not taste the same as slow-dried. Very close though. And this will speed your harvest time (which can be nerve-wracking, with all this pot hanging around drying.)

CLONING

Cloning preserves the character of your favorite plant. Cloning can make an ocean of green out of a single plant, so it is a powerful tool for growing large crops, and will fill a closet quickly with your favorite genetics. When you find the plant you want to be your "buddy" for the rest of your life, you can keep that plant's genetic character alive for decades and pass it on to your children's children. Propagate and share it with others, to keep a copy, should your own line die out. A clone can be taken from a clone at least 20 times, and probably more, so don't worry about myths of reduced vigor. Many reports indicate it's not a problem.

Cloning will open you to the risk of a fungus or pest wiping out the whole crop, so it's important to pick plants that exhibit great resistance to fungus and pests. Pick the plant you feel will be the most reliable to reproduce in large scale, based on health, growth rate, resistance to pests, and potency. The quality of the high, and the type of buzz you get will be a very important determining factor.

Take cuttings for clones before you move plants from vegetative grow area to the flowering area. Low branches are cut to increase air circulation under the green canopy. Rooted clones are moved to the vegetative growth area, and new clones are started in the cloning area using the low branch cuttings. Each cycle of growth will take from 6-8 weeks, so you can constantly be growing in 3 stages, and harvesting every 6-8 weeks.

Some types of plants are more difficult to clone than others. Big Bud is reported to not clone very well. One of my favorite plants, Mr. Kona, is the most amazing pot I ever smoked, but it is hard as hell to clone. What a challenge! I noticed other varieties that were rooting much quicker, but it was the stone I was after! Once you find the psychoactive, almost hallucinogenic properties of some Indica/Sativa hybrids, you never want to smoke a pure Indica again. Indica is however, great medicinally, so I like to grow a few pure strains too.

If a plant is harvested, you can sample it, and decide if you want to clone it. Pick your favorite 2 or 3 distinctly different types of plants to clone, based on trying the harvested plants. The plants you want to clone can be regenerated by putting them in constant light. In a few weeks, you will have many vegetative cuttings available for cloning and preserving your favorite plants.

After two months, any marijuana plant can be cloned. Flowering plants can be cloned, but the procedure may take considerably longer. Its best to wait, and regenerate vegetatively plants that have been harvested. A single regenerated/harvested plant can generate hundreds of cuttings. Cut young growth tips from a vegetative stage, mature plant (bottom branches are best) 3-5 inches long with a stem diameter 1/5-1/10 inch. Cut with a sterile razor blade or X-Acto knife (flamed) and immerse the cut end of the clone into a tub of distilled water mixed with 1/4 tsp. Peters 5-50-17 per gallon. Next, cut the bottom .2 inch off the end while it is submerged, using a diagonal cut. Remove the clone from the tub and dip into a liquid cloning solution following instructions on the label. Dust with fungicide and place in cloning tray or medium. Flowering plants can be cloned too, but may take longer, and may not have as high a success rate.

Cloning goes quickest with the liquid rooting solutions, in a warmed, aerated tray, with subdued lighting and high humidity. In a closet, you can make space above the grow area so that the heat of the lamp warms the tray (passive collecting) and spare the expense and hassle of the aquarium heater ($24) or agricultural heating pad w/ thermostat (pricey). A double 4" fluorescent lamp will be perfect. Leave lamps on for 24 hours a day. Cuttings should root in 2-3 weeks.

I found only one liquid rooting hormone solution that was not over $10. (Olivia's Gel was $12 for a 1.6 ounce bottle. Geez, what is this stuff, gold?) I found some dipNgrow for $9, considered myself lucky, and got a tray and clear cover for $7. A clear tray cover or greenhouse encloser is needed to bring up humidity to 90% (greenhouse levels). Liquid rooting hormone seems to be much more effective than powders. Some types available are Olivia's, Woods, and dipNgrow.

Mix a weak cloning solution of high P plant food (such as Peter's 5-50-17), trace elements, and Epsom salts and then dip plants in rooting solution per instructions on label. All of the above nutrients should be added in extremely small amounts, 25% of what would normally be used on growing plants. Or use a premade solution such as Olivia's Rooting Solution. Corn syrup has been reported to supplement the sugars needed by the plant during cloning, since it consists of plant sugars.

Use a powder fungicide too, like Roottone to be sure you don't spoil the clones with fungus. This is important, since clones and fungus like the conditions you will be creating for good rooting:

mild light
72-80 degrees
high humidity
Float the cuttings in a tray full of solution on polystyrene disposable plates, or styrene sheets (shipping/packing material) with holes punched, so the tops and leaves are out of the water. Take off all large leaves, leaving only smaller top leaves to reduce demand on the new rooting stalk. Aerate the tray solution with an air pump and bubble stone. Keep solution at 72-80 degrees for best results. Change the solution daily if not using an air stone and pump, so that oxygen is always available to the cuttings. A week later, clip yellowing leaves from cuttings to reduce water demands as the cuttings start to root.

Cover the plants with cellophane, or buy a try with a clear cover ($4) made for rooting at an indoor gardening supply house. You must keep humidity very high for the clones.

It's also possible to directly place a dipped cutting in a moist block of rockwool, floral foam with holes punched, or vermiculite in a cup; be sure to root cuttings in a constantly moist medium. Jiffy peat cubes are not recommended, as published reports indicate results were not good for rooting clones. Place starter cubes in tray of solution. Check twice a day to be sure cubes are moist, not drenched, and not dry. After about 2-3 weeks, rootlets will appear at the bottom of the pods. Transplant at this point to growing area, taking care not to disturb any exposed roots.

One grower writes us:

I have had virtually all attempted clones root with the following scheme:

  1. Prep cutting by removing large leaves on tip to be cut, allow to heal.
  2. While holding underwater, take final diagonal cut on stem to be rooted.
  3. Dip in Rootone, then spear stem about 2" deep in 16 oz. cups of 1/2 vermiculite, 1/2 perlite, which are kept in a Styrofoam cooler.
  4. Spray cuttings with a VERY mild complete fert. soln.
  5. Cover top of cooler with Saran Wrap, then punch holes for ventilation.
  6. Keep cooler in relatively mild temps, low light, and spray cuttings daily.
  7. Cuttings should root in about 3 weeks.
    Cloning is not as easy as starting from seed. With seeds, you can have 18" tall plants in 6 weeks or less. With clones, it may take 6 weeks for the plant to sprout roots and new growth. Seeds are easily twice as fast if you have empty indoor space being wasted that needs to be put to use quickly. Always breed a few buds for seeds, even if you expect to be cloning most of the time, you could get wiped out, and have nothing but your seeds left to start over.

Cloning in rockwool seems to work great, and no airpump is needed. I paid $9 for 98 rockwool starter cubes. A plastic tray is available ($.95) that holds 77 cubes in pockets allowing the cubes to be held in a tray of nutrient solution. They are easily removed and placed in a larger growing cube when rooted.

BREEDING

It is possible to breed and select cuttings from plants that grow, flower, and mature faster. Some plants will naturally be better than others in this regard, and it is easy to select not only the most potent plants to clone or breed, but the fastest growing/flowering plants as well. Find your fastest growth plant, and breed it with your "best high" male for fast flowering, potent strains. Clone your fastest, best high plant for the quickest monocrop garden possible. Over time, it will save you a lot of waiting around for your plants to mature.

When a male is starting to flower (2-4 weeks before the females) it should be removed from the females so it does not pollinate them. It is taken to a separate area. Any place that gets just a few hours of light per day will be adequate, including close to a window in a separate room in the house. Put newspaper or glass under it to catch the pollen as the flowers drop it.

Keep a male alive indefinitely by bending it's top severely and putting it in mild shock that delays it's maturity. Or take the tops as they mature and put the branches in water, over a piece of plate glass. Shake the branches every morning to release pollen onto the glass and then scrap it with a razor blade to collect it. A male pruned in this fashion stays alive indefinitely and will continue to produce flowers if it gets suitable dark periods. This is much better than putting pollen in the freezer! Fresh pollen is always best.

Save pollen in an air tight bag in the freezer. It will be good for about a month. It may be several more weeks before the females are ready to pollinate.

A plant is ready to pollinate 2 weeks after the clusters of female flowers first appear. If you pollinate too early, it may not work. Wait until the female flowers are well established, but still all while hairs are showing.

Turn off all fans. Use a paper bag to pollinate a branch of a female plant. Use different pollen from two males on separate branches. Wrap the bag around the branch and seal it at the opening to the branch. Shake the branch vigorously. Wet the paper bag after a few minutes with a sprayer and then carefully remove it. Large plastic zip-lock bags also. Slip the bag over the male branch and shake the pollen loose. Carefully remove the bad and zip it up. It should be very dusty with pollen. To pollinate, place it over a single branch of the female, zipping it up sideways around the stem so no pollen leaks out. Shake the bag and the stem at the same time. Allow to settle for an hour or two and shake it again. Remove it a few hours later. Your branch is now well pollinated and should show signs of visible seed production in 2 weeks, with ripe seeds splitting the calyxes by 3-6 weeks. One pollinated branch can create hundreds of seeds, so it should not be necessary to pollinate more than one or two branches in many cases.

SINSEMILLIA

When the female plant is not allowed to pollinate, it grows full of resin that was intended to make seeds. False seed pods swell with THC laden resin and the pistils turn red and orange and withdraw into the pods. Then the plant is harvested.

Seeds are not part of the bud when the flowers mature. This is called Sinsemillia, and simply means "no seeds."

SINSE SEEDS

It is possible to cross your favorite two female plants to create a new strain of seeds that will produce all female plants. Preferably, these two plants will be different types of plants, not from the same mother's seeds.

This will create the best offspring, since it will not lead to inbreeding. It is easier to gauge the quality of female plants than male plants, since the smoke is more potent and easier to judge it's finer qualities. Plants from seeds created in this fashion will be all female plants since there will be no chance of male chromosomes from female parents.

Use Gibberellic Acid on one branch of a female plant to induce male flowers. Gibberellic Acid is sold by nursery supply houses for plant breeding and hybridizing. Spray the plant once every day for 10 days with 100 ppm gibberellic acid. When the male flowers form, pollinate the flowers of your other target female plant you have selected. Just pollinate one branch unless you want lots of seeds!

Once the branch has male flowers, cut the branch and root it in water, with glass under it to catch the male pollen when it drops. Use a rooting solution similar to the above cloning solution. Collect the pollen with a plastic bag over the branch and shake it. Use a razor blade to scrap up fallen pollen and add it to the bag too.

It is also possible to pollinate the flowers of the plant you create the male flowers on, crossing it with itself. This is used to preserve a special plants characteristics. Cloning will also preserve the plants characteristics, but will not allow you to store seeds for use later.

ODORS AND NEGATIVE IONS

Negative ion generators have been used for years now to cut down on odors in a grow room, but reports are coming in that a negative ion generator will increase growth speed and yield. No true evidence to support this, however it does make sense, due to the fact that people and animals seem to be altered in a positive way by negative ions in the air, so plants may "feel" better too. Try putting one in the grow room. You may notice the buds don't have as much scent when picked, but that may be desirable in some cases.

A negative ion generator can be purchased for $15 to $100 depending on the type and power involved. Some have reversed cycles that collect the dust to a charged plate. It is also possible to use grounded aluminum foil on the wall and shelf where the ionizer sits, to collect these particles. Just wipe the foil clean once a month. It should be grounded to an electrical outlets ground wire. If you don't cover the wall and shelf with paper or foil, the wall will turn dark with dust taken from the air, and you will have to repaint that wall later.

OXYGEN

O2 to the roots is a big concern, since the plant requires this for nutrients to be available, and to rid itself of toxins, etc. One of the easiest things to do is use food grade hydrogen peroxide in the water to increase the availability of oxygen in the water. H2O2 has an extra oxygen atom that will easily break away and can be used by the plant. Oxygen Plus is a plant food that contains 25% hydrogen peroxide and is perfect for this use.

Using a planting medium that allows for plenty of aeration is also really important. Be sure you have good drainage by using Perlite, sand, or gravel in your mix and at the bottom of pots. Don't use a medium that holds too much water, or you may significantly reduce the oxygen available to the plant. More on that in the section on hydroponics.

Aerating the water before watering is also a good idea. In the case of soil potted plants, use an airpump to aerate the water overnight before watering your plants, or put the water in a container with a cap and shake it up real good before giving to the plants.

SAFETY AND PRIVACY

It has been reported utility companies can tell your bill is way off from the same time last year, and police are even finding growers this way, so more than 500 watts in the family home running constantly will show up as a regular monthly increase in electricity use. You can claim space heaters, more people living on the premises, too many television sets, and late hours, if they happen mention it to you (innocently). If the police knock and ask you about it, don't let them in, and move your plants to another location during the wee hours in a vehicle not your own.

Upon moving into a new place, it may be desirable to immediately establish high electricity use, so that your electrical use history won't reveal your activities in the future...

DISTILLED WATER

Some growers report purified or distilled water helps their plants grow faster. Perhaps due to sodium and heavy metals found in hard water that are not present in purified water. Hard water tends to build up alkaline salt deposits in soil that lockup trace minerals, and cause iron, copper and zinc deficiencies. There are several types of purified water, but many are not free of minerals that could be causing salt buildup over an extended period of time.

Tap water comes in two flavors. Hot and cold. The cold pipe has less calcium and sodium buildup in it, and should be freer of sediment once the water has been turned on and allowed to flow for 30 seconds. Hot water will have rust, lead deposits, and bough-que sodium and calcium, so much so, you will see it easily. Use only the amount of hot water needed to make the water the correct temperature (70-80 F). Tap water filtered through a carbon (charcoal) filter will be free of chlorine and most large particles, but will still contain dissolved solids such as sodium and heavy metals (lead, arsenic, nickel, etc.).

Purified bottled water will be either Reverse Osmosis or some form of carbon/sediment filtered water. When purchasing water at a store, unless it says RO or Distilled, don't bother buying it. It could still have the same dissolved solids and heavy metals your tap water has.

Reverse Osmosis filters will drastically reduce the amount of dissolved solids in the tap water. When installed and maintained, it will reduce the heavy metals and salts to minuscule levels, which are then probably safe to drink. While (RO) systems can provide sodium free water, it is not as good as distilled water. If filters and membrane are not changed at least once a year, the system will be drastically reduced in effectiveness.

RO systems are expensive initially, but since a large garden alone can take up to 10 gallons of water a week, it will pay for itself in a year or two, compared to buying bottled water. It pays to shop around for these systems, prices vary widely.

Distilled water is produced through boiling and steam run-off. It isolates the O2 to its pure form. It contains no pollutants, heavy metals, dissolved solids or chlorine that can react and build up in soils. It is expensive to purchase, but the bottles can be used as plant containers (get the squarish, tall styled plastic bottles) so the expense can be justified for a period of time. Purchasing a distiller is an option. It will have to be maintained (emptied of salts) on a regular basis, and carbon filter changed, but it is a good item to consider if you believe your water to be very hard. Very hard water is very hard on an RO system and a distiller may be the best option if you desire drinking water as well. Drinking distilled water will help your body flush toxins and reduced problems with kidney stones.

An alternative to using distilled water is to run the water thorough a sediment/charcoal filter combination to reduce dissolved solids and chlorine, and use a vinegar mix to lower PH in the water and prevent alkalinity buildup. This should make mineral available to the plants, even if salts begin to build up from the wet/dry regimen over an extended time.

BIRTH CONTROL PILLS

A solution of one pill to one gallon of water has been reported to cause increased growth speed in tomato plants. It is possible this will help herb plants too. One treatment administered before flowering and one administered a few weeks before harvesting might help the plant mature faster.

One grower told a story of the same type of plants, one administered the estrogen grew to 20 feet, while the other was 7 feet. This may be purely anecdotal, but it may work. Try it and report back to us on results.

SEED AND BUD STORAGE

Use a seal-a-meal to hermetically seal the bag with no air inside. Freeze or refrigerate, and bud and seed can be kept for years this way.

REVIEW:

Light -- lots of it, but not too close or you burn leaves.
CO2 -- if you can stand the hassle; or ferment in an unvented closet.
Vent -- More air the better. Both in and out of the room and internal.
Oxygen -- Use H2O2 in solution, and aerate water by shaking and air pump, use Pearlite or lava for increased drainage and oxygen storage.
Hydroponics -- This will increase both yield and speed of growth over soil.
Temperature -- The hotter the better if you have enough light and CO2; 70 up to 95 degrees with lots of light and CO2.
Nutrients -- Make sure you're giving the plant what it needs when it needs it. Watch for deficiencies.
PH -- 6.7 - 6.2 is ideal. Make sure you check the soil/nutrients; match up.
Pests -- Don't let all the above effort go to waste. Be vigilant.
Sea of Green -- grow more plants, smaller, faster, with less wasted light and space, using both indoor light, and forcing flowering outside where possible.
Transplanting -- Make sure you only have to transplant 2 times or less through the growth cycle, and do it early.
Grow smaller plants on shelves, increasing square footage growing space by 2 or 3 times.
Harvest often and sooner with fast maturing clones.
Negative ions are good, and make the plants feel better.
Purified (RO only) or distilled water may solve chlorine problems and make nutrients more available to the plant. This will insure pollutants and heavy metals are not in the water. Most growers do not go to this much trouble, so don't worry about it, but it's an interesting science experiment.
Security -- make sure your plants are not detected. Don't admit cops into the yard or house without a warrant. Never step off your property if asked to do so, unless you're being placed under arrest with a warrant.
A final comment:

Good results can be had even in what appear to be rather marginal situations. (i.e.: a four inch pot in a room with a skylight.) With the minimum of: well drained medium, good light with ventilation, regular application of a complete fertilizer, pest control, and avoidance of detection, anyone can take a viable seed to maturity.

One need not have a lot of money, or even know-how to grow good plants.

Sort:  

I just hope it's OK, that I reposted something I posted over 20 years ago FOR FREE to the internet. I acutally first posted it on USENET over 20 years ago, then OTHERS have posted it all over the web, in many different languages after that time.

I thought it was important to post free instructions how to grow weed, and I still feel that way. Wow, I feel so young!

thanks for being such a detective; I hope you realize this time it was not necessary...

good detectives are really needed. Anyhow nice post.. took some time to read..

I am a simple man, you talk about weed, I see boobs, I press upvote.

http://weedfarmer.com/growing_guide
its all copy pasta. word for word.

WoW what a great post!!! upvoted!

Thanks for sharing.

Does she come with the ventilation equipment? ;)

That's what I call a eye appealing photo to get traffic in, also very interesting post!

Wow great stuff😃🌱

Coin Marketplace

STEEM 0.30
TRX 0.12
JST 0.034
BTC 63900.40
ETH 3140.82
USDT 1.00
SBD 3.98