গণিত কীভাবে একটি পূর্ণ ভাষা হতে পারে?

in #bangla7 years ago

meris_banner_7-1080x460.jpg

গণিতকে বলা হয় বিজ্ঞানের ভাষা। আমরা ভাষা বলতে যা বুঝি, গণিত কি তেমনই বাংলা, ইংরেজি কিংবা ম্যান্দারিনের মতো কোনো ভাষা? এ প্রশ্নের উত্তর পেতে হলে আমাদের দেখতে হবে গণিতের শব্দ ও ব্যাকরণ কীভাবে এক একটি বাক্য রচনা করে।

ভাষা কী?
ভাষার বহুরকম সংজ্ঞায়ন হতে পারে। ভাষা হতে পারে কিছু শব্দ বা সংকেত, যেগুলো কিছু নিয়মের অধীনে থাকে। আবার বলা যেতে পারে, শব্দ কিংবা প্রতীক ব্যবহারের মাধ্যমে যোগাযোগের একটি পদ্ধতি। বিশ্ববিখ্যাত ভাষাবিদ নোয়াম চমস্কি ভাষাকে সংজ্ঞায়ন করেন সসীম সংখ্যক উপাদান দিয়ে গঠিত বাক্যসমগ্র বলে।

যেভাবেই সংজ্ঞায়ন করা হোক, আমরা সার্বিক বিবেচনায় কিছু উপাদানকে ভাষার বৈশিষ্ট্যের সূচক বলে ধরতে পারি।

অবশ্যই শব্দ বা প্রতীক সমূহের একটি অভিধান বা তালিকা থাকবে।
সেসব শব্দ বা প্রতীকের অবশ্যই অর্থ থাকতে হবে।
ভাষায় ব্যাকরণের প্রয়োগ থাকবে। অর্থাৎ কিছু নির্ধারিত নিয়ম থাকবে যা ভাষায় ব্যবহৃত শব্দগুলো ব্যবহারের সীমারেখা বলে দিবে।
প্রতীকগুলো দিয়ে বাক্য গঠনের মাধ্যমে ভাব প্রকাশ বা উপস্থাপন করা যাবে। বাক্য গঠনের মাধ্যমে ভাব উপস্থাপন করে তার ধারাবাহিক বর্ণনা সম্ভব হতে হবে।
আর অবশ্যই একদল মানুষ থাকতে হবে যারা সে ভাষা বুঝবে এবং ব্যবহার করবে।

এই শর্তগুলো হাতে নিয়ে গণিতের দিকে তাকালে দেখা যায়, গণিত সবগুলো শর্তই পূরণ করে বসে আছে। বিশ্বব্যাপী গণিতের প্রতীক, তার অর্থ, ব্যবহার আর ব্যাকরণ একই। গণিতবিদ, বিজ্ঞানী এবং অন্যান্যরা ধারণার আদান-প্রদানে গণিতকে ব্যবহার করেন। গণিত যেমন একদিকে বাস্তব ঘটনাকে বর্ণনা করতে পারে, তেমনই বিমূর্ত ধারণাকেও বর্ণনা করতে পারে। এমনকি গণিতের এমন একটি শাখা আছে, যেখানে নিজেই নিজেকে বর্ণনা করতে পারে। ঐ শাখাটি হলো মেটা-ম্যাথমেটিকস।

অভিধান, ব্যাকরণ ও পদবিন্যাস
গণিতের অভিধান সাজানো হয়েছে বিভিন্ন বর্ণমালা থেকে। পাশাপাশি এতে আছে বিভিন্ন চিহ্ন, যেমন যোগ কিংবা বিয়োগ। একটি গাণিতিক সমীকরণকে বলা যায় শব্দের সমাহারে তৈরি বাক্য। একটি সরল গাণিতিক সমীকরণ বিবেচনা করি।

3 + 5 = 8

একে পড়া যায়- তিন এর সাথে পাঁচ যোগ করলে আট এর সমান হয়। নিঃসন্দেহে এটি একটি পরিপূর্ণ বাক্য।

গণিতের ভাষায় বিশেষ্য পদ হলো এগুলো
সংখ্যা ও অংক (0, 2, 5, 9, 17 ইত্যাদি)

ভগ্নাংশ (1⁄4, 5⁄9, 2 1⁄3)

চলক (a, b, c, x, y, z ইত্যাদি)

রাশি (3x, x^2, 4+x ইত্যাদি)

রেখাচিত্র বা দৃশ্যমান উপাদান (বৃত্ত, কোণ, ত্রিভুজ, টেন্সর, ম্যাট্রিক্স ইত্যাদি)

অসীম সংখ্যা (∞)

পাই (π)

কাল্পনিক সংখ্যা (i, -i)

আলোর বেগ (C)

গণিতের ক্রিয়াপদগুলো
সমান ও অসমতা চিহ্ন (=, <, >)

গাণিতিক ক্রিয়া, যেমন- যোগ, বিয়োগ, গুণ, ভাগ, বর্গমূল করা। (+, ­, ×, ÷)

অন্যান্য ক্রিয়া (sin, cos, tan, sec ইত্যাদি)

গণিতের ব্যাকরণ এবং বাক্যগঠন অভিধানের মতোই আন্তর্জাতিক। কেউ যে দেশেরই লোক হোক, যে ভাষাতেই কথা বলুক, গাণিতিক ভাষার গঠন সকল দেশে একই। গাণিতিক সার্বজনীনতা সকলের জন্য সমান।

গাণিতিক সূত্র বা বিধিগুলো লেখা হয় বাম থেকে ডান দিকে।
পরিমাপ এবং চলকের জন্য ল্যাটিন বর্ণমালা ব্যবহার করা হয়। কিছু গ্রিক বর্ণও ব্যবহার করা হয়। পূর্ণসংখ্যাগুলো বোঝাতে নেয়া হয়েছে i, j, k, l, m, n। বাস্তব সংখ্যাকে প্রকাশ করা হয় a, b, c, α, β, γ দিয়ে। জটিল সংখ্যাকে নির্দেশ করতে ব্যবহার করা হয় w এবং z প্রতীক। অজানা চলকের জন্য x, y, z এবং ফাংশনের নামের জন্য f, g, h।
বিবিধ বিশেষ সংজ্ঞার জন্য গ্রিক বর্ণমালা ব্যবহৃত হয়। যেমন, λ দিয়ে তরঙ্গদৈর্ঘ্য আর ρ দিয়ে বোঝায় ঘনত্ব।
বন্ধনী চিহ্নগুলো নির্দেশ করে প্রতীকগুলো কোন ক্রম অনুসরণ করবে।

ভাষা একটি শিক্ষা উপকরণ
কীভাবে গাণিতিক বাক্যগুলো কাজ করে তা জানলে গণিত শেখা ও শেখানো উভয় পক্ষের জন্যই কার্যকরী ভূমিকা রাখে। সংখ্যা এবং প্রতীক প্রায়ই শিক্ষার্থীদের আতঙ্কগ্রস্ত করে তোলে। তাই কোনো পরিচিত ভাষায় সমীকরণকে বর্ণনা করলে তা সহজে শিক্ষার্থীর কাছে গ্রহণীয় হয়। মূলত, এটা অনেকটা কোনো বিদেশী ভাষাকে নিজের ভাষায় রূপান্তরের মতো।

যেহেতু পৃথিবীব্যাপী গণিত একই, তাই স্বভাবতই গণিত একটি বিশ্বজনীন ভাষা। গণিতের কোনো সংজ্ঞা কিংবা সূত্রের অর্থ বিভিন্ন ভাষায় একই। দুজন মানুষের মধ্যে কথ্য ভাষায় ভিন্নতা থাকতে পারে, কিন্তু গণিত সেই যোগাযোগ বাধা উৎরে গিয়েও কাজ করতে পারে।

গণিত শুধু সংখ্যা আর সমীকরণ নয়
গণিত বলতে শুরুতেই মোটাদাগে সংখ্যা আর সংখ্যাদের দিয়ে কিছু ক্রিয়া (যেমন, যোগ, বিয়োগ, ভাগ, বর্গমূল ইত্যাদি) বোঝায় না। বিমূর্ততা, ভাবমূলক বর্ণনা, বস্তুনিরপেক্ষ সংজ্ঞায়ন গণিতের চিরন্তন বৈশিষ্ট্য। জ্যামিতির কথাই বিবেচনা করি। একটি বস্তু কেমন হতে পারে তা গণিতের আওতাধীন। এমনকি কোনো বস্তু কেমন হওয়া অসম্ভব তা-ও গণিত শাস্ত্রের আওতাধীন।

সার্বিক দৃষ্টিকোণ থেকে বিচার করলে দেখা যাবে, মানুষের দ্বারা যত ভাষা সৃষ্টি হয়েছে তাদের মধ্যে সবচেয়ে আদিম কিন্তু এই গণিতই। যুক্তি ও যাচাইয়ের ভিত্তি হিসেবে সবসময় কাজ করেছে এই গণিত। ধর্ম, সংস্কৃতি, লিঙ্গ, কাল ইত্যাদি কোনোকিছুই এ ধারণার পরিবর্তন করতে পারেনি।

গণিতকে ভাষা না বলার যুক্তি
গণিতকে ভাষা বলার যুক্তি যেমন আছে, তেমনই একে নিয়ে আছে বিপরীত মত কিংবা ভিন্ন মত। অনেক ভাষাবিদ একে ভাষা হিসেবে স্বীকার করতে নারাজ। কারণ ‘ভাষা’র কোনো কোনো সংজ্ঞায় যোগাযোগকে কথ্যরূপ হিসেবে আখ্যায়িত করা হয়েছে। গণিত মূলত যোগাযোগের একটি লিখিত মাধ্যম; যেখানে খুব সরল একটি সমীকরণ সহজেই পড়ে ফেলা সম্ভব (যেমন- 1 + 1 = 2), কিন্তু জটিল কোনো সমীকরণ যেমন, ম্যাক্সওয়েলের সমীকরণ পড়তে গেলে বক্তার মাতৃভাষার সহায়তা নিতেই হবে- যে কারণে গণিত তাদের মতে ভাষা হিসেবে বিশ্বজনীনতা হারায়।

একই যুক্তিতে ইশারা বা সাংকেতিক ভাষার (Sign language) স্বীকৃতিও কেড়ে নেয়া যায়। কিন্তু অধিকাংশ ভাষাতাত্ত্বিকেরা সাংকেতিক ভাষাকে সত্যিকার ভাষা হিসেবে স্বীকার করেন।

গণিত দিয়ে আমরা বিশাল মহাবিশ্বের বিবিধ রহস্য থেকে শুরু করে কোষের ক্ষুদ্র জটিল জগত এমনকি ডিএনএ পর্যন্ত ব্যাখ্যা করতে পারি। শুধু তা-ই নয়, ক্ষুদ্রাতিক্ষুদ্র পরমাণুকেও ব্যাখ্যা করতে পারি। গ্রহদের গতি, জটিল রোগের প্রতিকার এমনকি ঘরের দরজা থেকে বেরিয়ে কর্মস্থল বা শিক্ষাঙ্গন, পার্ক যেখানেই যাই না কেন গণিতের অস্তিত্বকে ঝেড়ে ফেলার কোনো উপায় নেই। কম্পিউটার আর তথ্য বিনিময়ের অতিকায় বিপ্লবের বিস্তারিত কথা না-ই বললাম।

দৈনন্দিন জীবনে গণিত আষ্টেপৃষ্ঠে এমনভাবে জড়িয়ে আছে যে আমরা তার খানিকটাও দেখতে পাই না। অনেকটা বাতাসের সমুদ্রে থেকে বাতাসকে না দেখার মতো। আমাদের সহজাত প্রবৃত্তির কারণে আমরা হয়তো অভ্যাসের ভেতর থেকে ছেঁকে এনে ততটা খেয়াল করি না গণিতকে, কিন্তু যদি বলা হয় শুধুমাত্র সংখ্যা ছাড়া একটা দিন চলতে, তাহলে কি কেউ পারবে?

আধুনিক পৃথিবীর কোনো কল্পনায় আপনাকে নাহয় না ভাসালাম। আদিম সমাজের গুহাবাসী কোনো পরিবারের কর্তাকে যদি কেউ বলতো, তোমার কয় ছেলেমেয়ে গো?

কর্তাকে ছেলেমেয়েদের বের করে এনে দেখাতে হতো এই যে এরা! সংখ্যা না থাকলে এছাড়া আর কী উপায় আছে বলার? কর্তা যদি প্রতিকী দাগ দিয়ে, পাথর কিংবা কাঠি দিয়েও ছেলেমেয়ের সংখ্যা বোঝাতে যায় তাহলেও কিন্তু বিপদ! গণিত ঢুকে যাবে এতে!

আমাদের সকল ক্ষেত্রে আষ্টেপৃষ্ঠে এমনভাবে বিজড়িত একটি বিষয়কে ভাষা না বললেও, এর গুরুত্ব ভাষার চেয়ে কোনো অংশে কম নয়।

Sort:  

thank you represent our bangladesh and bangla post 👍

  • powerful post in bangla (04/03/2018) link

Interesting to understand actually

Coin Marketplace

STEEM 0.19
TRX 0.18
JST 0.032
BTC 87260.43
ETH 3288.09
USDT 1.00
SBD 2.95