How the Aurora Borealis Form?
The aurora borealis (northern lights) form when charged particles emitted from the sun during a solar flare penetrate the earth's magnetic shield and collide with atoms and molecules in our atmosphere. These collisions result in countless little bursts of light, called photons, which make up the aurora. Collisions with oxygen produce red and green auroras, while nitrogen produces the pink and purple colors. This reaction encircles the polar regions of the earth and occurs at an altitude of 40-400 miles (65-650 km) in a zone called the "Auroral Oval."
When & Where
The aurora borealis most commonly occur between 60°-75° latitude, but during great geomagnetic storms the auroral oval expands equatorially and can reach 30° latitude or further. In the northern hemisphere they are called the aurora borealis (northern lights) and in the southern hemisphere aurora australis (southern lights).
An auroral display might be observed any night from dusk until dawn as long as it is dark, which excludes Alaskan summer nights (May-July). The best time to view them is between midnight and 2 am. There is an 11-year solar cycle (on average) that controls the tempo of the aurora. The most recent peak in the cycle occurred in 2014. The next peak is predicted for around 2025...but do not despair! There will be plenty of auroras between now & zen.
Auroras are occasionally seen in latitudes below the auroral zone, when a geomagnetic storm temporarily enlarges the auroral oval. Large geomagnetic storms are most common during the peak of the eleven-year sunspot cycle or during the three years after the peak.[10][11] An aurora may appear overhead as a "corona" of rays, radiating from a distant and apparent central location, which results from perspective. An electron spirals (gyrates) about a field line at an angle that is determined by its velocity vectors, parallel and perpendicular, respectively, to the local geomagnetic field vector B. This angle is known as the “pitch angle” of the particle. The distance, or radius, of the electron from the field line at any time is known as its Larmor radius. The pitch angle increases as the electron travels to a region of greater field strength nearer to the atmosphere. Thus it is possible for some particles to return, or mirror, if the angle becomes 90 degrees before entering the atmosphere to collide with the denser molecules there. Other particles that do not mirror enter the atmosphere and contribute to the auroral display over a range of altitudes. Other types of auroras have been observed from space, e.g."poleward arcs" stretching sunward across the polar cap, the related "theta aurora",[12] and "dayside arcs" near noon. These are relatively infrequent and poorly understood. There are other interesting effects such as flickering aurora, "black aurora" and sub-visual red arcs. In addition to all these, a weak glow (often deep red) observed around the two polar cusps, the field lines separating the ones that close through the Earth from those that are swept into the tail and close remotely.
These NOAA maps of North America and Eurasia show the local midnight equatorward boundary of the aurora at different levels of geomagnetic activity; a Kp=3 corresponds to low levels of geomagnetic activity, while Kp=9 represents high levels
Causes of auroras
A full understanding of the physical processes which lead to different types of auroras is still incomplete, but the basic cause involves the interaction of the solar wind with the Earth’s magnetosphere. The varying intensity of the solar wind produces effects of different magnitudes, but includes one or more of the following physical scenarios.
A quiescent solar wind flowing past the Earth’s magnetosphere steadily interacts with it and can both inject solar wind particles directly onto the geomagnetic field lines that are ‘open’, as opposed to being ‘closed’ in the opposite hemisphere, and provide diffusion through the bow shock. It can also cause particles already trapped in the radiation belts to precipitate into the atmosphere. Once particles are lost to the atmosphere from the radiation belts, under quiet conditions new ones replace them only slowly, and the loss-cone becomes depleted. In the magnetotail, however, particle trajectories seem constantly to reshuffle, probably when the particles cross the very weak magnetic field near the equator. As a result, the flow of electrons in that region is nearly the same in all directions ("isotropic"), and assures a steady supply of leaking electrons. The leakage of electrons does not leave the tail positively charged, because each leaked electron lost to the atmosphere is replaced by a low energy electron drawn upward from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics. The complete process, which also generates an electric ring current around the Earth, is uncertain.
Geomagnetic disturbance from an enhanced solar wind causes distortions of the magnetotail ("magnetic substorms"). These ‘substorms’ tend to occur after prolonged spells (hours) during which the interplanetary magnetic field has had an appreciable southward component. This leads to a higher rate of interconnection between its field lines and those of Earth. As a result, the solar wind moves magnetic flux (tubes of magnetic field lines, ‘locked’ together with their resident plasma) from the day side of Earth to the magnetotail, widening the obstacle it presents to the solar wind flow and constricting the tail on the night-side. Ultimately some tail plasma can separate ("magnetic reconnection"); some blobs ("plasmoids") are squeezed downstream and are carried away with the solar wind; others are squeezed toward Earth where their motion feeds strong outbursts of auroras, mainly around midnight ("unloading process"). A geomagnetic storm resulting from greater interaction adds many more particles to the plasma trapped around Earth, also producing enhancement of the "ring current". Occasionally the resulting modification of the Earth's magnetic field can be so strong that it produces auroras visible at middle latitudes, on field lines much closer to the equator than those of the auroral zone.
Acceleration of auroral charged particles invariably accompanies a magnetospheric disturbance that causes an aurora. This mechanism, which is believed to predominantly arise from wave-particle interactions, raises the velocity of a particle in the direction of the guiding magnetic field. The pitch angle is thereby decreased, and increases the chance of it being precipitated into the atmosphere. Both electromagnetic and electrostatic waves, produced at the time of greater geomagnetic disturbances, make a significant contribution to the energising processes that sustain an aurora. Particle acceleration provides a complex intermediate process for transferring energy from the solar wind indirectly into the atmosphere.
Up-vote........... Re steem..........Follow