Artificial Intelligence Preprint | 2019-06-08

in #artificial5 years ago

Artificial Intelligence


Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading (1906.02738v1)

Lianhui Qin, Michel Galley, Chris Brockett, Xiaodong Liu, Xiang Gao, Bill Dolan, Yejin Choi, Jianfeng Gao

2019-06-06

Although neural conversation models are effective in learning how to produce fluent responses, their primary challenge lies in knowing what to say to make the conversation contentful and non-vacuous. We present a new end-to-end approach to contentful neural conversation that jointly models response generation and on-demand machine reading. The key idea is to provide the conversation model with relevant long-form text on the fly as a source of external knowledge. The model performs QA-style reading comprehension on this text in response to each conversational turn, thereby allowing for more focused integration of external knowledge than has been possible in prior approaches. To support further research on knowledge-grounded conversation, we introduce a new large-scale conversation dataset grounded in external web pages (2.8M turns, 7.4M sentences of grounding). Both human evaluation and automated metrics show that our approach results in more contentful responses compared to a variety of previous methods, improving both the informativeness and diversity of generated output.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning (1906.02736v1)

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare

2019-06-06

Many reinforcement learning (RL) tasks provide the agent with high-dimensional observations that can be simplified into low-dimensional continuous states. To formalize this process, we introduce the concept of a DeepMDP, a parameterized latent space model that is trained via the minimization of two tractable losses: prediction of rewards and prediction of the distribution over next latent states. We show that the optimization of these objectives guarantees (1) the quality of the latent space as a representation of the state space and (2) the quality of the DeepMDP as a model of the environment. We connect these results to prior work in the bisimulation literature, and explore the use of a variety of metrics. Our theoretical findings are substantiated by the experimental result that a trained DeepMDP recovers the latent structure underlying high-dimensional observations on a synthetic environment. Finally, we show that learning a DeepMDP as an auxiliary task in the Atari 2600 domain leads to large performance improvements over model-free RL.

Adaptive Gradient-Based Meta-Learning Methods (1906.02717v1)

Mikhail Khodak, Maria Florina-Balcan, Ameet Talwalkar

2019-06-06

We build a theoretical framework for understanding practical meta-learning methods that enables the integration of sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction algorithms. Our approach enables the task-similarity to be learned adaptively, provides sharper transfer-risk bounds in the setting of statistical learning-to-learn, and leads to straightforward derivations of average-case regret bounds for efficient algorithms in settings where the task-environment changes dynamically or the tasks share a certain geometric structure. We use our theory to modify several popular meta-learning algorithms and improve their training and meta-test-time performance on standard problems in few-shot and federated deep learning.

Options as responses: Grounding behavioural hierarchies in multi-agent RL (1906.01470v2)

Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, Joel Z. Leibo

2019-06-04

We propose a novel hierarchical agent architecture for multi-agent reinforcement learning with concealed information. The hierarchy is grounded in the concealed information about other players, which resolves "the chicken or the egg" nature of option discovery. We factorise the value function over a latent representation of the concealed information and then re-use this latent space to factorise the policy into options. Low-level policies (options) are trained to respond to particular states of other agents grouped by the latent representation, while the top level (meta-policy) learns to infer the latent representation from its own observation thereby to select the right option. This grounding facilitates credit assignment across the levels of hierarchy. We show that this helps generalisation---performance against a held-out set of pre-trained competitors, while training in self- or population-play---and resolution of social dilemmas in self-play.

Scaling Autoregressive Video Models (1906.02634v1)

Dirk Weissenborn, Oscar Täckström, Jakob Uszkoreit

2019-06-06

Due to the statistical complexity of video, the high degree of inherent stochasticity, and the sheer amount of data, generating natural video remains a challenging task. State-of-the-art video generation models attempt to address these issues by combining sometimes complex, often video-specific neural network architectures, latent variable models, adversarial training and a range of other methods. Despite their often high complexity, these approaches still fall short of generating high quality video continuations outside of narrow domains and often struggle with fidelity. In contrast, we show that conceptually simple, autoregressive video generation models based on a three-dimensional self-attention mechanism achieve highly competitive results across multiple metrics on popular benchmark datasets for which they produce continuations of high fidelity and realism. Furthermore, we find that our models are capable of producing diverse and surprisingly realistic continuations on a subset of videos from Kinetics, a large scale action recognition dataset comprised of YouTube videos exhibiting phenomena such as camera movement, complex object interactions and diverse human movement. To our knowledge, this is the first promising application of video-generation models to videos of this complexity.

Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain) (1905.11833v2)

Mariya Toneva, Leila Wehbe

2019-05-28

Neural network models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. Despite much work, it is still unclear what the representations learned by these networks correspond to. We propose here a novel approach for interpreting neural networks that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally use the insights from the attention experiments to alter BERT: we remove the learned attention at shallow layers, and show that this manipulation improves performance on a wide range of syntactic tasks. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.

Flexibly Fair Representation Learning by Disentanglement (1906.02589v1)

Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann Pitassi, Richard Zemel

2019-06-06

We consider the problem of learning representations that achieve group and subgroup fairness with respect to multiple sensitive attributes. Taking inspiration from the disentangled representation learning literature, we propose an algorithm for learning compact representations of datasets that are useful for reconstruction and prediction, but are also \emph{flexibly fair}, meaning they can be easily modified at test time to achieve subgroup demographic parity with respect to multiple sensitive attributes and their conjunctions. We show empirically that the resulting encoder---which does not require the sensitive attributes for inference---enables the adaptation of a single representation to a variety of fair classification tasks with new target labels and subgroup definitions.

Combining Reinforcement Learning and Configuration Checking for Maximum k-plex Problem (1906.02578v1)

Peilin Chen, Hai Wan, Shaowei Cai, Weilin Luo, Jia Li

2019-06-06

The Maximum k-plex Problem is an important combinatorial optimization problem with increasingly wide applications. Due to its exponential time complexity, many heuristic methods have been proposed which can return a good-quality solution in a reasonable time. However, most of the heuristic algorithms are memoryless and unable to utilize the experience during the search. Inspired by the multi-armed bandit (MAB) problem in reinforcement learning (RL), we propose a novel perturbation mechanism named BLP, which can learn online to select a good vertex for perturbation when getting stuck in local optima. To our best of knowledge, this is the first attempt to combine local search with RL for the maximum -plex problem. Besides, we also propose a novel strategy, named Dynamic-threshold Configuration Checking (DTCC), which extends the original Configuration Checking (CC) strategy from two aspects. Based on the BLP and DTCC, we develop a local search algorithm named BDCC and improve it by a hyperheuristic strategy. The experimental result shows that our algorithms dominate on the standard DIMACS and BHOSLIB benchmarks and achieve state-of-the-art performance on massive graphs.

Localizing Catastrophic Forgetting in Neural Networks (1906.02568v1)

Felix Wiewel, Bin Yang

2019-06-06

Artificial neural networks (ANNs) suffer from catastrophic forgetting when trained on a sequence of tasks. While this phenomenon was studied in the past, there is only very limited recent research on this phenomenon. We propose a method for determining the contribution of individual parameters in an ANN to catastrophic forgetting. The method is used to analyze an ANNs response to three different continual learning scenarios.

Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains (1906.02564v1)

Claudia Schulz, Christian M. Meyer, Jan Kiesewetter, Michael Sailer, Elisabeth Bauer, Martin R. Fischer, Frank Fischer, Iryna Gurevych

2019-06-06

Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.



Sort:  

Congratulations @wholesome-post! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) :

You published more than 80 posts. Your next target is to reach 90 posts.

You can view your badges on your Steem Board and compare to others on the Steem Ranking
If you no longer want to receive notifications, reply to this comment with the word STOP

To support your work, I also upvoted your post!

Vote for @Steemitboard as a witness to get one more award and increased upvotes!

Coin Marketplace

STEEM 0.19
TRX 0.13
JST 0.030
BTC 62835.77
ETH 3392.04
USDT 1.00
SBD 2.50