Artificial Intelligence Preprint | 2019-04-16

in #artificial5 years ago

Artificial Intelligence


Tutorial: Safe and Reliable Machine Learning (1904.07204v1)

Suchi Saria, Adarsh Subbaswamy

2019-04-15

This document serves as a brief overview of the "Safe and Reliable Machine Learning" tutorial given at the 2019 ACM Conference on Fairness, Accountability, and Transparency (FAT* 2019). The talk slides can be found here: https://bit.ly/2Gfsukp, while a video of the talk is available here:

, and a complete list of references for the tutorial here: https://bit.ly/2GdLPme.

Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models (1902.08858v2)

Tiancheng Zhao, Kaige Xie, Maxine Eskenazi

2019-02-23

Defining action spaces for conversational agents and optimizing their decision-making process with reinforcement learning is an enduring challenge. Common practice has been to use handcrafted dialog acts, or the output vocabulary, e.g. in neural encoder decoders, as the action spaces. Both have their own limitations. This paper proposes a novel latent action framework that treats the action spaces of an end-to-end dialog agent as latent variables and develops unsupervised methods in order to induce its own action space from the data. Comprehensive experiments are conducted examining both continuous and discrete action types and two different optimization methods based on stochastic variational inference. Results show that the proposed latent actions achieve superior empirical performance improvement over previous word-level policy gradient methods on both DealOrNoDeal and MultiWoz dialogs. Our detailed analysis also provides insights about various latent variable approaches for policy learning and can serve as a foundation for developing better latent actions in future research.

Reinforcement Learning with Probabilistic Guarantees for Autonomous Driving (1904.07189v1)

Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J. Kochenderfer, Jana Tumova

2019-04-15

Designing reliable decision strategies for autonomous urban driving is challenging. Reinforcement learning (RL) has been used to automatically derive suitable behavior in uncertain environments, but it does not provide any guarantee on the performance of the resulting policy. We propose a generic approach to enforce probabilistic guarantees on an RL agent. An exploration strategy is derived prior to training that constrains the agent to choose among actions that satisfy a desired probabilistic specification expressed with linear temporal logic (LTL). Reducing the search space to policies satisfying the LTL formula helps training and simplifies reward design. This paper outlines a case study of an intersection scenario involving multiple traffic participants. The resulting policy outperforms a rule-based heuristic approach in terms of efficiency while exhibiting strong guarantees on safety.

Synthetic Neural Vision System Design for Motion Pattern Recognition in Dynamic Robot Scenes (1904.07180v1)

Qinbing Fu, Cheng Hu, Pengcheng Liu, Shigang Yue

2019-04-15

Insects have tiny brains but complicated visual systems for motion perception. A handful of insect visual neurons have been computationally modeled and successfully applied for robotics. How different neurons collaborate on motion perception, is an open question to date. In this paper, we propose a novel embedded vision system in autonomous micro-robots, to recognize motion patterns in dynamic robot scenes. Here, the basic motion patterns are categorized into movements of looming (proximity), recession, translation, and other irrelevant ones. The presented system is a synthetic neural network, which comprises two complementary sub-systems with four spiking neurons -- the lobula giant movement detectors (LGMD1 and LGMD2) in locusts for sensing looming and recession, and the direction selective neurons (DSN-R and DSN-L) in flies for translational motion extraction. Images are transformed to spikes via spatiotemporal computations towards a switch function and decision making mechanisms, in order to invoke proper robot behaviors amongst collision avoidance, tracking and wandering, in dynamic robot scenes. Our robot experiments demonstrated two main contributions: (1) This neural vision system is effective to recognize the basic motion patterns corresponding to timely and proper robot behaviors in dynamic scenes. (2) The arena tests with multi-robots demonstrated the effectiveness in recognizing more abundant motion features for collision detection, which is a great improvement compared with former studies.

Joint Learning of Brain Lesion and Anatomy Segmentation from Heterogeneous Datasets (1903.03445v2)

Nicolas Roulet, Diego Fernandez Slezak, Enzo Ferrante

2019-03-08

Brain lesion and anatomy segmentation in magnetic resonance images are fundamental tasks in neuroimaging research and clinical practice. Given enough training data, convolutional neuronal networks (CNN) proved to outperform all existent techniques in both tasks independently. However, to date, little work has been done regarding simultaneous learning of brain lesion and anatomy segmentation from disjoint datasets. In this work we focus on training a single CNN model to predict brain tissue and lesion segmentations using heterogeneous datasets labeled independently, according to only one of these tasks (a common scenario when using publicly available datasets). We show that label contradiction issues can arise in this case, and propose a novel adaptive cross entropy (ACE) loss function that makes such training possible. We provide quantitative evaluation in two different scenarios, benchmarking the proposed method in comparison with a multi-network approach. Our experiments suggest that ACE loss enables training of single models when standard cross entropy and Dice loss functions tend to fail. Moreover, we show that it is possible to achieve competitive results when comparing with multiple networks trained for independent tasks.

Processsing Simple Geometric Attributes with Autoencoders (1904.07099v1)

Alasdair Newson, Andrés Almansa, Yann Gousseau, Saïd Ladjal

2019-04-15

Image synthesis is a core problem in modern deep learning, and many recent architectures such as autoencoders and Generative Adversarial networks produce spectacular results on highly complex data, such as images of faces or landscapes. While these results open up a wide range of new, advanced synthesis applications, there is also a severe lack of theoretical understanding of how these networks work. This results in a wide range of practical problems, such as difficulties in training, the tendency to sample images with little or no variability, and generalisation problems. In this paper, we propose to analyse the ability of the simplest generative network, the autoencoder, to encode and decode two simple geometric attributes : size and position. We believe that, in order to understand more complicated tasks, it is necessary to first understand how these networks process simple attributes. For the first property, we analyse the case of images of centred disks with variable radii. We explain how the autoencoder projects these images to and from a latent space of smallest possible dimension, a scalar. In particular, we describe a closed-form solution to the decoding training problem in a network without biases, and show that during training, the network indeed finds this solution. We then investigate the best regularisation approaches which yield networks that generalise well. For the second property, position, we look at the encoding and decoding of Dirac delta functions, also known as `one-hot' vectors. We describe a hand-crafted filter that achieves encoding perfectly, and show that the network naturally finds this filter during training. We also show experimentally that the decoding can be achieved if the dataset is sampled in an appropriate manner.

A deep learning framework for quality assessment and restoration in video endoscopy (1904.07073v1)

Sharib Ali, Felix Zhou, Adam Bailey, Barbara Braden, James East, Xin Lu, Jens Rittscher

2019-04-15

Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.

Disease gene prioritization using network topological analysis from a sequence based human functional linkage network (1904.06973v1)

Ali Jalilvand, Behzad Akbari, Fatemeh Zare Mirakabad, Foad Ghaderi

2019-04-15

Sequencing large number of candidate disease genes which cause diseases in order to identify the relationship between them is an expensive and time-consuming task. To handle these challenges, different computational approaches have been developed. Based on the observation that genes associated with similar diseases have a higher likelihood of interaction, a large class of these approaches relay on analyzing the topological properties of biological networks. However, the incomplete and noisy nature of biological networks is known as an important challenge in these approaches. In this paper, we propose a two-step framework for disease gene prioritization: (1) construction of a reliable human FLN using sequence information and machine learning techniques, (2) prioritizing the disease gene relations based on the constructed FLN. On our framework, unlike other FLN based frameworks that using FLNs based on integration of various low quality biological data, the sequence of proteins is used as the comprehensive data to construct a reliable initial network. In addition, the physicochemical properties of amino-acids are employed to describe the functionality of proteins. All in all, the proposed approach is evaluated and the results indicate the high efficiency and validity of the FLN in disease gene prioritization.

Human-Guided Learning of Column Networks: Augmenting Deep Learning with Advice (1904.06950v1)

Mayukh Das, Yang Yu, Devendra Singh Dhami, Gautam Kunapuli, Sriraam Natarajan

2019-04-15

Recently, deep models have been successfully applied in several applications, especially with low-level representations. However, sparse, noisy samples and structured domains (with multiple objects and interactions) are some of the open challenges in most deep models. Column Networks, a deep architecture, can succinctly capture such domain structure and interactions, but may still be prone to sub-optimal learning from sparse and noisy samples. Inspired by the success of human-advice guided learning in AI, especially in data-scarce domains, we propose Knowledge-augmented Column Networks that leverage human advice/knowledge for better learning with noisy/sparse samples. Our experiments demonstrate that our approach leads to either superior overall performance or faster convergence (i.e., both effective and efficient).

Learning Deformable Kernels for Image and Video Denoising (1904.06903v1)

Xiangyu Xu, Muchen Li, Wenxiu Sun

2019-04-15

Most of the classical denoising methods restore clear results by selecting and averaging pixels in the noisy input. Instead of relying on hand-crafted selecting and averaging strategies, we propose to explicitly learn this process with deep neural networks. Specifically, we propose deformable 2D kernels for image denoising where the sampling locations and kernel weights are both learned. The proposed kernel naturally adapts to image structures and could effectively reduce the oversmoothing artifacts. Furthermore, we develop 3D deformable kernels for video denoising to more efficiently sample pixels across the spatial-temporal space. Our method is able to solve the misalignment issues of large motion from dynamic scenes. For better training our video denoising model, we introduce the trilinear sampler and a new regularization term. We demonstrate that the proposed method performs favorably against the state-of-the-art image and video denoising approaches on both synthetic and real-world data.



Sort:  

Peace @wholesome-post
Thanks for sharing this informative post.
I would like to welcome you on steem and share this information with you.
Do you know that partiko is a steem mobile application that can help you earn fairly steem power ? If you want to increase your potential to blog on steem ecosystem feel free to ask on my latest post.
Warm regards.

Posted using Partiko Android

Coin Marketplace

STEEM 0.19
TRX 0.13
JST 0.030
BTC 62835.77
ETH 3392.04
USDT 1.00
SBD 2.50