What is Shutter Speed

in #photography7 years ago

In photography, a shutter is a device that allows light to pass for a determined period, exposing photographic film or a light-sensitive electronic sensor to light in order to capture a permanent image of a scene. A shutter can also be used to allow pulses of light to pass outwards, as seen in a movie projector or a signal lamp. A shutter of variable speed is used to control exposure time of the film. The shutter is so constructed that it automatically closes after a certain required time interval. The speed of the shutter is controlled by a ring outside the camera, on which various timings are marked.

Camera shutters can be fitted in several positions:


Leaf shutters are usually fitted within a lens assembly (central shutter), or more rarely immediately behind (behind-the-lens shutter) or, even more rarely, in front of a lens, and shut off the beam of light where it is narrow.

Focal-plane shutters are mounted near the focal plane and move to uncover the film or sensor.

Behind-the-lens shutters were used in some cameras with limited lens interchangeability. Shutters in front of the lens, sometimes simply a lens cap that is removed and replaced for the long exposures required, were used in the early days of photography. Other mechanisms than the dilating aperture and the sliding curtains have been used; anything which exposes the film to light for a specified time will suffice.


The time for which a shutter remains open (exposure time, often called "shutter speed") is determined by a timing mechanism. These were originally pneumatic (Compound shutter) or clockwork, but since the late twentieth century are mostly electronic. Mechanical shutters typically had a Time setting, where the shutter opened when the button was pressed and remained open until it was pressed again, Bulb where the shutter remained open as long as the button was pressed (originally actuated by squeezing an actual rubber bulb), and Instantaneous exposure, with settings ranging from 30" to 1/4000" for the best leaf shutters, faster for focal-plane shutters, and more restricted for basic types. The reciprocal of exposure time in seconds is often used for engraving shutter settings. For example, a marking of "250" denotes 1/250". This does not cause confusion in practice.


The exposure time and the effective aperture of the lens must together be such as to allow the right amount of light to reach the film or sensor. Additionally, the exposure time must be suitable to handle any motion of the subject. Usually it must be fast enough to "freeze" rapid motion, unless a controlled degree of motion blur is desired, for example to give a sensation of movement.


Most shutters have a flash synchronization switch to trigger a flash, if connected. This was quite a complicated matter with mechanical shutters and flashbulbs which took an appreciable time to reach full brightness, focal-plane shutters making this even more difficult. Special flashbulbs were designed which had a prolonged burn, illuminating the scene for the whole time taken by a focal plane shutter slit to move across the film. These problems were essentially solved for non-focal-plane shutters with the advent of electronic flash units which fire virtually instantaneously and emit a very short flash.


When using a focal-plane shutter with a flash, if the shutter is set at its X-sync speed or slower the whole frame will be exposed when the flash fires (otherwise only a band of the film will be exposed). Some electronic flashes can produce a longer pulse compatible with a focal-plane shutter operated at much higher shutter speeds. The focal-plane shutter will still impart focal-plane shutter distortions to a rapidly moving subject.


Cinematography uses a rotary disc shutter in movie cameras, a continuously spinning disc which conceals the image with a reflex mirror during the intermittent motion between frame exposure. The disc then spins to an open section that exposes the next frame of film while it is held by the registration pin.


Focal-plane shutter


Main article: Focal-plane shutter


A focal-plane shutter is positioned just in front of the film, in the focal plane, and moves an aperture across the film until the full frame has been exposed. Focal-plane shutters are usually implemented as a pair of light-tight cloth, metal, or plastic curtains. For shutter speeds slower than a certain point (known as the X-sync speed of the shutter), which depends on the camera, one curtain of the shutter opens, and the other closes after the correct exposure time. At shutter speeds faster than the X-sync speed, the top curtain of the shutter travels across the focal plane, with the second curtain following behind, effectively moving a slit across the focal plane until each part of the film or sensor has been exposed for the correct time. The effective exposure time can be much shorter than for central shutters, at the cost of some distortion of fast-moving subjects.


Focal plane shutters have the advantage over central leaf shutters of allowing the use of interchangeable lenses without requiring a separate shutter for each lens. (Leaf shutters behind the lens also allow interchanging the lens using a single shutter.)


They have several disadvantages as well:


Distortion of fast-moving subjects: although no part of the film is exposed for longer than the time set on the dial, one edge of the film is exposed an appreciable time after the other, so that a horizontally moving shutter will, for example, elongate or shorten the image of a car speeding in the same or the opposite direction to the shutter movement.

They are noisier, which is a detriment to candid and nature photography.

Their more complex mechanical structure causes a shorter life-span than other shutter designs.

If a focal-plane shutter camera is left with sunlight falling on the lens (and the mirror up for an SLR), it is possible to burn a hole in the closed curtain of a non-metal shutter.

Camera shake due to the impact of the larger curtains starting and stopping rapidly. Camera designers have learned to overcome SLR mirror-slap by including a mirror lock-up feature in some cameras. This removes the camera-shake from the large slapping mirror inside the camera, but does not prevent camera-shake caused by the shutter mechanism itself. Mirror-lock-up introduces yet another problem: with the mirror locked-up out of the way the optical viewfinder cannot be used for focussing, framing, or exposure metering. Newer[when?] DSLR cameras include a "live preview" where the image from the main imaging sensor is displayed directly on an LCD display, so it is still possible to focus (manually or in newer models by contrast detection) and frame. This prevents most camera shake from the focal-plane shutter, as instead of a first curtain an electronic shutter is used.


Coin Marketplace

STEEM 0.23
TRX 0.28
JST 0.042
BTC 104956.85
ETH 3880.98
SBD 3.32